
 Aerospace engineering & manufacturing
Custom reprint from

aero-online.org

The User Request
Evaluation Tool
developed by a team
that included
Lockheed Martin and
AdaCore is conflict-
detection technology
designed to save
time, fuel, and money
while also helping to
ensure safe aircraft
separation.

Avionics
Conflict-detection technology takes to the skies
The U.S. FAA instituted the Free Flight
program to better enable controllers to
handle significant growths in air traffic,
and to increase safety and capacity at Air
Route Traffic Control Centers (ARTCCs).
This program included the development
and deployment of the User Request
Evaluation Tool (URET), conflict-detection
technology that automatically detects and
advises air-traffic controllers of predicted
conflicts between aircraft and special-use
airspace within the National Airspace
Systems.

URET is based on a prototype that
was developed by Mitre’s Center for
Advanced Aviation Systems Development.
It can determine whether pilot-requested
changes in flight plans are free of conflicts
with other air traffic. It can also evaluate
pilots’ requests to deviate from their
planned routes to avoid adverse weather,
assign more direct routing of aircraft, and
evaluate changes in altitude to take ad-
vantage of favorable winds. Prior to
URET, controllers relied on paper flight
strips and mental calculations to deter-
mine whether a proposed route change
would be conflict-free.

The FAA awarded Lockheed Martin
the multi-million dollar contract to fully
develop URET, including systems engi-
neering, software development, integra-
tion and deployment, hardware design,
and installation.

After an extensive phase study,
Lockheed Martin selected Sun
Microsystems’ SPARC processor archi-
tecture as the computer platform for
URET, and Ada was selected as the pre-
ferred language for software develop-
ment. To support software development
for the platform, the development team
needed an Ada compiler.

Lockheed Martin had very specific re-
quirements that warranted more than
standard compiler deliverables. First, the
development team wanted to reuse some
existing software products for URET that
were originally developed on different
computer platforms. Second, it wanted to
use the POSIX thread library of Solaris
for protection from priority inversion to

ensure the correct behavior of key, real-
time algorithms used in several of
Lockheed Martin’s air-traffic control ap-
plications. In addition, Lockheed Martin
required a compiler that could deliver cor-
rect signal and interrupt handling for
URET’s multiple-threaded and multitask
environment.

Following an extensive, robust evalua-
tion period that included comparing func-
tion, cost, and support, the Lockheed
Martin URET team selected the GNAT
Pro development environment and ASIS-
for-GNAT products from AdaCore.

Because Lockheed Martin wanted to
reuse some existing software products
developed on different computer plat-
forms, a type dictionary support tool was

October 2008

TechnologyUpdate

October 2008

TechnologyUpdate

Custom reprint from
Aerospace engineering & manufacturing aero-online.org

needed to port from one platform to an-
other. The type dictionary lays out the de-
tails of all fields of a particular Ada type at
the bit level. It was implemented using
AdaCore’s ASIS-for-GNAT, which is an
implementation of the Ada Semantic
Interface Specification (ASIS).

ASIS is a library that gives applications
access to the complete syntactic and se-
mantic structure of an Ada compilation
unit. This library is typically used by tools
that need to perform some sort of static
analysis on an Ada program.

ASIS is an international standard
(ISO/IEC 15291:1995), and is designed
to be compiler-independent. Thus, a tool
that processes the ASIS representation
of a program will work regardless of what
ASIS implementation has been used. This
means, for instance, that most ASIS ap-
plications can run on a different target
than the final target.

However, for some kinds of utilities, it
is useful for ASIS applications to be able
to deal with target-dependent issues,
such as the size of floating-point types or
the layout of record types. The Data
Decomposition Annex (DDA) of ASIS is
designed to provide just that kind of spe-
cialized target-dependent information,
which can be useful when using ASIS in
conjunction with embedded applications.
ASIS-for-GNAT fully implements the
DDA, unlike other competing ASIS imple-
mentations, which omit this capability, ac-
cording to AdaCore.

To support the type dictionary, the
Lockheed Martin URET team also needed
the optional ASIS DDA to provide the ex-
act layout of the bits to port this tool from
Lockheed Martin’s previous platform to
SPARC Solaris and the GNAT Pro under-
lying data structures. As an optional an-
nex, the team requested that AdaCore
add this capability to its ASIS-for-GNAT
implementation.

Lockheed Martin uses the type diction-
ary and the ASIS interface for more than
just interrogating the compiler about deci-

sions it has made about data layout on
various platforms. The technology also is
used to take data recorded online, which
would normally just look like a stream of
bits, and process that data offline. The
dictionary content literally lays out a map
of the individual type and allows interpre-
tation of those bits in a context-specific
and meaningful fashion.

The type dictionary also enables plat-
form independence, one of URET’s key
requirements. For example, in another
system Lockheed Martin has two subsys-
tems, one executing on a Solaris operat-
ing system with a GNAT Pro compiler,
and the other subsystem executing with a
different compiler and platform. The
URET team needed to use representation
clauses to impose the exact layout to fol-
low on each platform. It used the type
dictionary to come up with a common
definition that could be used on both sub-
systems.

In addition to the ASIS DDA, AdaCore
was also asked to enhance the GNAT Pro
compiler to support the POSIX thread
library of Solaris. Lockheed Martin’s re-
quirements were stringent regarding pro-
tection from priority inversion, and its
URET team requested that certain thread
priorities be available to make proper use
of the POSIX thread library.

Priority inversion is a problem in con-
current systems with shared resources.
Typical priority inversion occurs when a

high-priority task waits for a resource that
is currently held by a low-priority task, but
the low-priority task has been interrupted
by a medium-priority task that is unrelated
to the first two tasks. Thus the high-priori-
ty task may be delayed for an arbitrary
amount of time waiting for the low-priority
task to restart.

Lockheed Martin also needed changes
in the way signal interrupts were handled.
In certain multiple-threaded or multitask
environments, the wrong signal was being
delivered to an unexpected process or
task in the executable. This proved to be
a particularly complex problem to solve,
as it was intermittent.

During the development and testing
stage, AdaCore solved the problem when
it realized that the URET team needed
support for three types of handlers: the
system, runtime, and user. To support
these needs, AdaCore introduced a new
“pragma Interrupt_State,” which allowed
program developers to clearly map inter-
rupts or signals to a default system han-
dler, the Ada Runtime and an Ada excep-
tion, or to a user-defined handler using an
Ada-protected procedure or interrupt en-
try, respectively.

The FAA ended up being able to install
URET systems at all 20 ARTCCs on or
ahead of schedule. Since URET was de-
ployed, the FAA estimates that carriers
have reduced routes over 89.5 million nmi.

Jean L. Broge

North American Headquarters
104 Fifth Avenue, 15th Floor
New York, NY 10011
tel +1 212 620 7300
fax +1 212 807 0162

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52

